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EXPONENTIAL TIME DIFFERENCING FOR
HODGKIN–HUXLEY-LIKE ODES∗
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Abstract. Several authors have proposed the use of exponential time differencing (ETD) for
Hodgkin–Huxley-like partial and ordinary differential equations (PDEs and ODEs). For Hodgkin–
Huxley-like PDEs, ETD is attractive because it can deal effectively with the stiffness issues that
diffusion gives rise to. However, large neuronal networks are often simulated assuming “space-
clamped” neurons, i.e., using the Hodgkin–Huxley ODEs, in which there are no diffusion terms. Our
goal is to clarify whether ETD is a good idea even in that case. We present a numerical comparison
of first- and second-order ETD with standard explicit time-stepping schemes (Euler’s method, the
midpoint method, and the classical fourth-order Runge–Kutta method). We find that in the standard
schemes, the stable computation of the very rapid rising phase of the action potential often forces
time steps of a small fraction of a millisecond. This can result in an expensive calculation yielding
greater overall accuracy than needed. Although it is tempting at first to try to address this issue with
adaptive or fully implicit time-stepping, we argue that neither is effective here. The main advantage
of ETD for Hodgkin–Huxley-like systems of ODEs is that it allows underresolution of the rising phase
of the action potential without causing instability, using time steps on the order of one millisecond.
When high quantitative accuracy is not necessary and perhaps, because of modeling inaccuracies,
not even useful, ETD allows much faster simulations than standard explicit time-stepping schemes.
The second-order ETD scheme is found to be substantially more accurate than the first-order one
even for large values of Δt.

Key words. Hodgkin–Huxley equations, computational neuroscience, exponential time differ-
encing, stiffness
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1. Introduction and overview. Systems of Hodgkin–Huxley-like ordinary dif-
ferential equations (ODEs), modeling neurons or neuronal networks, are commonly
solved in computational neuroscience with simple explicit numerical methods, often
using a fixed time step Δt. The value of Δt is usually on the order of 0.01ms—much
shorter than even a voltage spike (Table 1). Why does it have to be so small? We
investigate this question through computational experiments for Hodgkin–Huxley-
like model neurons, as well as networks of such model neurons. We specify our test
problems and the numerical methods that we use to solve them in section 2.

Great quantitative precision may not, at this point, be a sensible aim in compu-
tational neuroscience, since there is substantial uncertainty about model parameters,
translating into even greater uncertainty about the solutions of the model equations;
see section 3.2 for illustrations of this point. The proper goal of the computational
simulation of neuronal networks is, therefore, at the present time more likely to be
qualitative insight than quantitative precision.
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B624 CHRISTOPH BÖRGERS AND ALEXANDER R. NECTOW

Table 1

Examples of methods and time steps used in the literature to solve Hodgkin–Huxley-like systems.

Reference Method Δt [ms]

Börgers, Epstein, and Kopell [1] midpoint method (2nd-order) 0.01
Hasegawa [9] 4th-order Runge–Kutta 0.01
Ho et al. [14] Euler’s method (1st order) 0.001–0.01

Hodgkin and Huxley [13] Hartree’s method [8] 0.02–1.0
Kopell et al. [16] midpoint method (2nd-order) 0.02

Rubin and Wechselberger [24] 4th-order Runge–Kutta ≤ 0.01
Tiesinga, José, and Sejnowski [27] 2nd- and 4th-order Runge–Kutta 0.01

Traub et al. [28] 2nd-order Taylor series method 0.002
Wang and Buzsáki [31] 4th-order Runge–Kutta 0.05

However, even though there is probably no need for great accuracy in most con-
texts in computational neuroscience, simple, explicit numerical methods for Hodgkin–
Huxley-like systems often do require Δt to be on the order of 0.01ms. Significantly
larger values of Δt can easily lead to catastrophic breakdown of the computations;
see section 4. On the other hand, we also demonstrate in section 4 that time steps on
the order of 0.01 ms often give more accuracy than is likely to be useful, in view of
the modeling uncertainties. Thus stability constraints force us into paying for more
accuracy than we need.

Not surprisingly, the time step is constrained primarily by the voltage spikes. In
section 5, we demonstrate that between voltage spikes, Δt = 1 ms gives perfectly
adequate accuracy for our model problems. Ironically, therefore, what makes the
solution of Hodgkin–Huxley-like ODEs expensive is the need to compute spike shapes,
over and over again, even though those shapes are largely stereotypical, i.e., almost
the same for each spike, and well known a priori. Furthermore, in many situations,
it is unnecessary to know the precise spike shape; what matters is mostly whether
or not there is a spike. This, of course, is the reason for the popularity of integrate-
and-fire models, in which spike shapes are not approximated at all. In section 6,
we show that the breakdown of the standard explicit methods for Δt � 0.01 ms is
caused specifically by the rising phase of the voltage spike: The rapid rise of the
membrane potential often lasts no longer than a few times 0.01 ms. We present
numerical results in section 6 suggesting that the fundamental cause of trouble with
larger values of Δt is overshoot of the membrane potential during the rising phase,
triggering instability.

In view of these observations, a natural approach would be to use adaptive time
steps, so that at least one could use larger time steps between spikes. However, in
a network containing many neurons, conventional step size control strategies would
force small time steps for the whole network whenever a single neuron spikes, thereby
destroying much of the advantage of using adaptive time-stepping, unless the spiking
is synchronous. We give a numerical example illustrating this point in section 7. An
alternative is to abandon the requirement that the spike shapes be resolved accurately
and to look for a method which, while capable of producing high accuracy when Δt is
very small, quickly and efficiently produces crude approximations to the spike shapes
and good accuracy between spikes with much larger Δt. Fully implicit methods are not
a good option here because of the difficulty of solving the nonlinear systems that would
arise in each time step: To achieve convergence of iterative methods used for solving
those nonlinear systems, we would need to impose the same time step constraint that
simple explicit methods require for stability. In section 8, we illustrate this point
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with a numerical experiment for a Hodgkin–Huxley-like system and analyze it for the
logistic equation.

The idea of exponential time differencing (ETD) is to freeze, in each time step,
some of the variables, in such a way that the equations become linear, and then solve
analytically over the time interval of duration Δt [5, 11]. To derive ETD schemes for
Hokdgin-Huxley-like systems of ODEs, we exploit a special feature of such systems:
Each variable appears linearly in the equation governing its time evolution.1

The simplest ETD scheme for Hodgkin–Huxley-like ODEs, called the “exponential
Euler method,” is the default time-stepping method in the software packages CSIM
[19] and GENESIS [2]. We prove in section 9.2 that it is unconditionally stable for
Hodgkin–Huxley-like ODEs, i.e., guaranteed to prevent the kind of overshoot that
constrains the time step in the simpler methods. Its accuracy in the limit as Δt → 0
was analyzed by Oh and French [22]. Using numerical experiments, we demonstrate
in section 9 that it allows, for our model equations, time steps as large as 1 ms (or
even greater), of course at the expense of not resolving the spike shapes accurately.
We also propose a second-order accurate “exponential midpoint” method. Oh and
French [22] suggested and analyzed a similar method; their method has good, but not
unconditional, stability. We propose a modification of their method which restores
unconditional stability by preventing voltage overshoot even in the preliminary half
time step of the midpoint method. We present numerical results indicating that this
method, too, allows the use of time steps as large as 1 ms and that it often yields
substantially better results, even for large Δt, than the exponential Euler method.

In summary, we conclude that the advantage of ETD schemes for Hodgkin–
Huxley-like ODEs lies in their unconditional stability specifically during the rising
phase of the action potential. With time steps many times larger than those com-
monly used, ETD can still produce qualitatively correct, even if quantitatively some-
what crude, results, taking a fraction of the time required for a simulation with
schemes such as Euler’s method, the midpoint method, or the classical fourth-order
Runge–Kutta method (RK4). Furthermore, the ETD schemes are not much more
complicated or costly than the simple, standard explicit schemes.

In section 10, we discuss a “semi-implicit” (SI) version of Euler’s method (see also
section 2.3.3) which has, for Hodgkin–Huxley-like systems, properties similar to those
of the exponential Euler method. However, we have not been able to generalize this
method to second-order accuracy, preserving unconditional stability. In section 11,
we analyze the exponential and SI methods for a one-dimensional model equation,
confirming the conclusions from our numerical experiments, and in section 12, we put
our results into the context of related work by others.

2. Test problems and numerical methods.

2.1. Neuronal models. We report on numerical experiments with Hodgkin–
Huxley-like model neurons, and networks of such model neurons, in this paper. Since
the models are taken from the literature, we will not state all the details here but will
give references for some of them. Both model neurons are of the form of the classi-
cal Hodgkin–Huxley ODEs [13] with the simplifying assumption that the activation

1Strictly speaking, in our Hodgkin–Huxley-like models, the membrane potential v appears non-
linearly in the evolution equation for v because the models rely on the simplifying assumption that
the gating variable m is a direct function of v; see (2.1). We hide this fact by writing “m” on the
right-hand side of (2.1), not “m∞(v).” No complications arise as a result.
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B626 CHRISTOPH BÖRGERS AND ALEXANDER R. NECTOW

variable, m, of the sodium current is a direct function of v:

C
dv

dt
= gNam

3h(vNa − v) + gKn4(vK − v) + gL(vL − v) + I,(2.1)

dx

dt
=

x∞(v) − x

τx(v)
for x = h, n, m = (m∞(v))3 .(2.2)

The letters v, t and τ , C, g, and I denote voltage (membrane potential), time, ca-
pacitance density, conductance density, and current density, respectively, measured
in mV, ms, μF/cm2, mS/cm2, and μA/cm2. For simplicity, we will often omit units
from here on. The functions x∞ and τx always satisfy

(2.3) x∞(v) ∈ (0, 1) and τx(v) > 0 for all v.

As in the classical Hodgkin–Huxley model, the gating variables m and n are “acti-
vation variables,” i.e., m∞(v) and n∞(v) are increasing functions of v, while h is an
“inactivation variable,” i.e., h∞(v) is a decreasing function of v. We assume that

(2.4) C, gNa, gK , gL are positive.

These parameters, as well as vNa, vK , and vL, will be specified next.

2.1.1. Reduced Traub–Miles neuron. The reduced Traub–Miles (RTM)
model, due to Ermentrout and Kopell [7], is a reduction of a model of a pyrami-
dal cell in rat hippocampus proposed by Traub and Miles in [30]. We use a variation
stated in complete detail in [16, Appendix 1] (see also [23]). The parameters are
C = 1, gK = 80, gNa = 100, gL = 0.1, vK = −100, vNa = 50, and vL = −67. Our
choices of I will be specified later. For the definitions of x∞(v) ∈ (0, 1) (x = m,h, n)
and τx(v) > 0 (x = h, n), we refer to [23] or [16, Appendix 1].

2.1.2. Wang–Buzsáki neuron. In the Wang–Buzsáki (WB) model of an in-
hibitory basket cell in rat hippocampus [31], the parameters are C = 1, gNa = 35,
gK = 9, gL = 0.1, vNa = 55, vK = −90, and vL = −65. Note in particular that the
conductance densities gNa and gK are much smaller than in the RTM model. For the
definitions of x∞ and τx, see [31] or [16, Appendix 1].

2.2. E/I networks. We will also study networks of 160 RTM and 40 WB neu-
rons, which we refer to as “E-cells” (for “excitatory cells”) and “I-cells” (for “in-
hibitory cells”), respectively. We adopt the synaptic model of [7] with parameter
values as in [16, Appendix 1]. In particular, the rise and decay times are 0.1ms and
3ms for excitatory synapses and 0.3ms and 9ms for inhibitory ones, and the reversal
potentials are 0mV for excitatory synapses and −80mV for inhibitory ones. Connec-
tivity is chosen at random: For any pair of neurons, A and B, the probability that B
receives synaptic input from A is 1/4, provided that at least one of the two neurons
is inhibitory; we omit E → E-connections. Other parameters are chosen to produce a
“gamma frequency” (∼ 40Hz) network oscillation. The drive to the jth E-cell is

IE,j = 2 + 0.25Xj,

where the Xj (j = 1, 2, . . . , 160) are independent Gaussians with mean 0 and standard
deviation 1. The drives to all I-cells are zero. Using the notation of [16], the strengths
of the synapses are characterized by

gEE = 0, gEI = 0.2, gIE = 0.5, gII = 0.1.

For instance, gEI = 0.2 means that the sum of the maximal conductances associated
with all excitatory synapses affecting a given I-cell has the expected value 0.2. All
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E → I synapses have the same strength, but the total number of E-cells giving input
to a given I-cell is random because connectivity is sparse and random.

2.3. Numerical methods. We use the explicit and implicit Euler, midpoint,
and classical RK4 methods, as well as the exponential and SI integrators defined
below. We fix the time step Δt > 0 throughout, except in section 7, where we
use the ode23 function of MATLAB, which is adaptive. We write vj , nj , and hj

for the numerical approximations for v(jΔt), n(jΔt), and h(jΔt). We also write
mj = m∞(vj) and tj = jΔt.

2.3.1. Exponential Euler method. In the exponential Euler method, given
vj , hj , and nj , one analytically solves the linear initial-value problem

C
dṽ

dt
= gNam

3
jhj(vNa − ṽ) + gKn4

j(vK − ṽ) + gL(vL − ṽ) + I,(2.5)

dx̃

dt
=

x∞(vj)− x̃

τx(vj)
, x = h, n,(2.6)

ṽ(jΔt) = vj , h̃(jΔt) = hj, ñ(jΔt) = nj,

and then sets

vj+1 = ṽ((j + 1)Δt), hj+1 = h̃((j + 1)Δt), nj+1 = ñ((j + 1)Δt).

2.3.2. Exponential midpoint method. In our version of the exponential mid-
point method, given vj , hj , and nj, we analytically solve

C
dṽ

dt
= gNam

3
j+1/2hj+1/2(vNa − ṽ) + gKn4

j+1/2(vK − ṽ) + gL(vL − ṽ) + I,(2.7)

dx̃

dt
=

x∞(vj+1/2)− x̃

τx(vj+1/2)
, x = h, n,(2.8)

ṽ(jΔt) = vj , h̃(jΔt) = hj , ñ(jΔt) = nj ,

where vj+1/2, hj+1/2, and nj+1/2 are computed using a step of the exponential Euler
method with time step Δt/2, and mj+1/2 stands for m∞(vj+1/2). We then define

vj+1 = ṽ((j + 1)Δt), hj+1 = h̃((j + 1)Δt), nj+1 = ñ((j + 1)Δt).

Oh and French [22] used the explicit Euler method for the preliminary half step.

2.3.3. SI Euler method. We consider a variation of the Euler method in which
each dependent variable is treated implicitly in the equation describing its time evo-
lution but explicitly in all other equations:

C
vj+1 − vj

Δt
= gNam

3
jhj(vNa − vj+1) + gKn4

j(vK − vj+1) + gL(vL − vj+1) + I,(2.9)

xj+1 − xj

Δt
=

x∞(vj)− xj+1

τx(vj)
, x = h, n.(2.10)

Note that these equations are simple and inexpensive to solve, since they are linear in
vj+1 and xj+1, respectively. (Note that on the right-hand side of (2.9), mj = m∞(vj)
appears, not mj+1.)

D
ow

nl
oa

de
d 

10
/1

5/
19

 to
 1

56
.1

11
.1

11
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B628 CHRISTOPH BÖRGERS AND ALEXANDER R. NECTOW

We do not discuss an “SI midpoint method” here because we have not been able
to construct one that has stability properties similar to those of the ETD schemes
and the SI Euler method (see Proposition 9.1, sections 10 and 11).

2.3.4. Numerical computation of firing frequency. When the goal is to
track the membrane potentials of spiking neurons accurately, there is no question
that very small time steps are needed. However, often less detailed information is
desired in computational neuroscience. The simplest example is the computation
of the frequency f of a periodically firing neuron. To compute f , we simulate a
sufficiently long time interval (in the calculations presented in this paper, we take it
to be a 300 ms interval) and determine the difference T between the second-to-last
and last spike times. (See below for a discussion of how we define and compute spike
times.) T is the period of the neuron. The frequency f is computed from the formula
f = 1000/T. The factor of 1000 is needed because we follow the convention, common
in neuroscience, of measuring time in ms, but frequency in Hz = s−1.

We define the spike times of a neuron to be the times at which the action potential
v is 0 with dv/dt > 0. The slight arbitrariness of this convention does not, of course,
affect the computed periods. Since we will compute frequencies using the RK4 method
in some of our numerical experiments and would like to verify fourth-order accuracy,
we need to approximate spike times with at least fourth-order accuracy. When com-
puting firing frequencies of individual neurons, we therefore determine spike times
as follows. Suppose that tj = jΔt, and vj is the computed approximation for v(tj),
j = 0, 1, 2, . . . . If k ≥ 1 and vk < 0 ≤ vk+1, we define p = p(t) to be the cubic
polynomial with p(tj) = vj for j = k − 1, k, k + 1, and k + 2, and use the bisec-
tion method to find a solution t∗ of p(t) = 0 with tk < t∗ ≤ tk+1, with rounding
error accuracy. Because the interpolating polynomial p is cubic, this procedure com-
putes spike times with fourth-order accuracy, provided that the vj are computed with
fourth-order accuracy as well.2

3. Properties of solutions of Hodgkin–Huxley-like ODEs.

3.1. Bounding box. Since we are interested in whether discretizations of the
differential equations allow over- or under-shoot (see section 1), we first state simple
bounds on v, h, and n valid for the differential equations themselves: Under reasonable
assumptions on I, the trajectory (v, h, n) cannot leave the box (vK , vNa)×(0, 1)×(0, 1)
if it starts in this box.

Proposition 3.1. Let (v, h, n) be a solution of (2.1) and (2.2), and assume (2.3),
(2.4), and

(3.1) −gL(vL − vK) < I < gL(vNa − vL).

If (v(0), h(0), n(0)) ∈ (vK , vNa) × (0, 1) × (0, 1), then (v(t), h(t), n(t)) ∈ (vK , vNa) ×
(0, 1)× (0, 1) for all t ≥ 0.

Proof. Using (2.3), (2.2) implies that dx/dt > 0 when x = 0, and dx/dt < 0 when
x = 1, x = h, n. Therefore x(t) ∈ (0, 1) for all t ≥ 0 if x(0) ∈ (0, 1). Then (2.1),
together with (3.1), implies dv/dt > 0 when v = vK and dv/dt < 0 when v = vNa.
Thus the vector field points into the box in all points on the boundary of the box.
This implies the assertion.

2When computing and plotting spike rastergrams, it is unnecessary to determine spike times
with that much care. Our network codes therefore compute the spike time, more conventionally, by
determining the time at which the line connecting (tk , vk) with (tk+1, vk+1) crosses the line v = 0.
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Table 2

Percentage change in neuronal spiking frequency when one model parameter is multiplied by 1.01.

C gK gNa gL vK vNa vL I
RTM −.95 −.03 .19 .16 −.79 .08 −6.20 .63
WB −.22 −.46 .33 −.52 −1.67 −.04 −8.38 .89

Values of I outside the range given by the inequalities in (3.1) are of very little
interest. For the RTM neuron, (3.1) becomes −3.3 < I < 11.7; the spiking threshold
is slightly above 0.1, and for I = 11.7, the firing frequency is about 232 Hz—much
higher than typical for neurons in the brain under most circumstances. For the WB
neuron, (3.1) becomes −2.5 < I < 12; the spiking threshold is slightly above 0.15,
and for I = 12, the firing frequency is about 314Hz.

3.2. Parameter dependence. Hodgkin–Huxley-like models describe biological
reality only approximately, not with great quantitative precision. The proper goal
of most numerical simulations in neuroscience should therefore, at this point, be
qualitative insight, not quantitative accuracy. Fairly large numerical errors may be
acceptable, as long as the computed solutions are qualitatively correct.

This reasoning is, of course, not always right. For instance, sometimes the differ-
ential equations themselves are the primary subject of interest, and then it is impor-
tant to be able to obtain solutions with high accuracy. Ideally, a numerical method
should therefore be able to obtain high accuracy if one needs it and is willing to pay
the computational price for it, but also be able to quickly and inexpensively obtain
rough but qualitatively correct approximations. This is useful, for instance, for a
quick preliminary exploration of a high-dimensional parameter space.

To illustrate the uncertainty in the models of section 2.1, we consider the sen-
sitivity of the firing frequency to changes in the eight parameters C, gK , gNa, gL,
vK , vNa, vL, and I. We start with the parameter values of section 2.1, using (arbi-
trarily) I = 0.7. This yields firing frequencies of f0 ≈ 35 Hz for the RTM neuron,
and f0 ≈ 44 Hz for the WB neuron. We then multiply one of the eight parameters
by 1.01, while leaving all others unchanged, determine the resulting firing frequency
f , and compute the percentage change, (f − f0)/f0 × 100. The results, recorded in
Table 2, show that the firing frequency is in fact remarkably insensitive to many of
the parameters: Often the firing frequency changes by less than one percent when a
parameter is changed by one percent. The firing frequency is, however, quite sensitive
to the reversal potential of the leak current, vL. One percent uncertainty about the
value of vL translates into 6.20 percent uncertainty about the firing frequency for the
RTM neuron and 8.38 percent uncertainty for the WB neuron. There is no reason to
think that, for instance, the RTM neuron with vL = −67 is a better model of reality
than the same model with vL = −67× 1.01 = −67.67. One may therefore be content,
for many purposes, with numerical simulations that come within 5 percent accuracy
or so, as long as they are qualitatively correct.

4. Often stability, not accuracy, constrains the time step. Figure 4.1
shows projections into the (v, n)-plane of approximate solutions of the RTM and WB
models, with I = 0.7, obtained with time steps Δt increasing from left to right.
The top three rows of the figure show results for the RTM model, obtained using
the explicit Euler method (first row), the midpoint method (second row), and RK4
(third row). The bottom three rows show analogous results for the WB model. The
rightmost panel in each row shows results of a highly inaccurate and nearly unstable
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Δ t = 0.01

1)

Δ t = 0.015 Δ t = 0.02 Δ t = 0.03

Δ t = 0.01

2)

Δ t = 0.015 Δ t = 0.02 Δ t = 0.03

Δ t = 0.02

3)

Δ t = 0.03 Δ t = 0.04 Δ t = 0.043

Δ t = 0.05

4)

Δ t = 0.10 Δ t = 0.15 Δ t = 0.195

Δ t = 0.10

5)

Δ t = 0.15 Δ t = 0.20 Δ t = 0.25

Δ t = 0.10

6)

Δ t = 0.20 Δ t = 0.30 Δ t = 0.40

Fig. 4.1. Projections into the (v, n)-plane of computed approximations of limit cycles of the
RTM and WB neurons, obtained using three different numerical methods and various values of Δt.
(1) RTM, explicit Euler, (2) RTM, midpoint method, (3) RTM, RK4, (4) WB, explicit Euler, (5)
WB, midpoint method, and (6) WB, RK4. In all cases, I = 0.7. If Δt were raised just slightly in
any of the plots in the right-most column, an overflow error would result.

calculation; in each case, a very slight further increase in Δt would lead to an overflow
error.

The results show that for the three standard methods, applied to the RTM model,
time steps Δt much greater than 0.01 ms result in catastrophic instability. For the
WB neuron, there is a similar instability, but it occurs at significantly greater values
of Δt; see section 6 for an explanation of this difference between the two models.

Nothing would be wrong with time steps Δt on the order of 0.01ms if accuracy
requirements dictated so small a time step anyway. However, we will now present
results suggesting that as soon as Δt is so small that the calculation is stable, the
accuracy may be greater than necessary for most purposes. This is illustrated by
Figure 4.2, panel A, which shows the percentage error in the computed frequency of
an RTM neuron (I = 0.7) as a function of Δt, in a log-log plot. As Δt increases,
the accuracy deteriorates, but just before the calculations break up as a result of
catastrophic instability, accuracy is still very good—the errors are much smaller than,
say, five percent (indicated by the dashed horizontal line in Figure 4.2), and therefore
probably smaller than necessary (see section 3.2). Thus the time step size is dictated
by stability, not accuracy.

However, Figure 4.2, panel B, demonstrates that stability considerations are not
always the most constraining factor. The figure shows numerical experiments for the
WB model. For this model, if the goal is to reach about five percent accuracy, the
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Fig. 4.2. Log-log plots of relative error in computed firing frequency, as a function of Δt, for the
explicit Euler method (stars), the midpoint method (dots), and RK4 (circles), for the RTM (panel
A) and WB (panel B) models. The solid lines are of slopes 1, 2, and 4, and were added to confirm
that the three methods give first, second, and fourth-order accurate approximations to the frequency.
(Since the scaling is not the same on both axes, actual slopes seen in the figures differ from 1, 2,
and 4.) Dashed horizontal line: relative error = 0.05 (i.e., five percent error). Dashed vertical line:
Δt = 0.05. For the RTM neuron, calculations with Δt > 0.05 result in catastrophic instability in all
cases.

choice of time step is dictated by accuracy, not stability: As Δt increases and the
accuracy deteriorates, a five-percent error level is reached before stability is lost.

5. Between action potentials, large time steps yield good accuracy.
Panel A of Figure 5.1 shows a voltage trace of the RTM neuron with I = 0.7 as a
solid line, and an approximation computed using Δt = 1 as dots. The computation
with Δt = 1 was started immediately after a voltage spike and gave very good results
up to the time of the next spike. At that time, an overflow error occurred. Panel B
of the same figure shows results of an analogous numerical experiment with the WB
model, where Δt = 2 was used in between spikes.

These figures demonstrate that the need to resolve spike shapes dictates the choice
of Δt; between spikes, much larger time steps give adequate accuracy. Thus most of
the effort is spent on computing voltage spikes. This should not and need not be the
case: The voltage spike shapes are sterotypical, i.e., they are known a priori with good
accuracy. There should be no need to expend significant computational resources on
computing them over and over again.

In both panels of Figure 5.1, we took Δt close to the limit: Increasing Δt by 1ms
(to 2 ms in panel A, 3 ms in panel B) would result in catastrophic instability. This

40 50 60 70
−100

−50

0

50

t

v

A

40 50 60 70
−100

−50

0

50

t

v

B

Fig. 5.1. A: Voltage trace of RTM neuron computed using the midpoint method with Δt = 0.002
(solid line) and Δt = 1 (dots). B: Voltage trace of the WB neuron computed using the midpoint
method with Δt = 0.002 (solid line) and Δt = 2 (dots).
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is a different instability than that shown in Figure 4.1. It is related to the fact that
the motion toward the subthreshold part of the limit cycle is fast in comparison with
the motion along the subthreshold part of the limit cycle. By contrast, the instability
shown in Figure 4.1, which makes itself felt at much smaller values of Δt already and
therefore constrains Δt much more severely, is related to the very fast motion along
the limit cycle during the upstroke of the action potential; see section 6.

6. The rising phase of the action potential is the primary source of
instability. A closer look at the instability shown in Figure 4.1 suggests that the
main difficulty is the rising phase of the action potential. For the RTM model, the
rising phase of the action potential is extremely brief, on the order of 0.03 ms; see
Figure 6.1, panel A. The dashed horizontal lines in Figure 6.1 and in subsequent
figures indicate vK and vNa, the bounds on v in the continuous case; see Proposition
3.1. Figure 6.2 shows voltage traces computed using the explicit Euler method with
Δt = 0.01, 0.02, 0.03. For Δt = 0.04, a catastrophic instability sets in, and there is
an overflow error. It is interesting to look more closely at the computed voltage spikes
when the voltage overshoots. The bottom panel of Figure 6.2 shows a close-up look
at the computation with Δt = 0.02. There is zig-zagging, very much like that seen
when solving a stiff problem using an explicit method with slightly too large a value
of Δt.

113 114 115

−100

0

100

t

B

99.5 100.5 101.5

−100

0

100

t

v

A

Fig. 6.1. A single voltage spike computed using the midpoint method with Δt = 0.002. A: RTM
neuron, B: WB neuron, with I = 0.7 in both cases.
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Fig. 6.2. Voltage traces of the RTM neuron (I = 0.7), computed using the explicit Euler method
with various values of Δt. The bottom panel shows a close-up of the computation with Δt = 0.02.
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Fig. 6.3. Voltage traces of the RTM neuron (I = 0.7), computed using the midpoint method
with various values of Δt. The bottom panel is a close-up for Δt = 0.03, showing both the computed
values vj of the membrane potential (solid) and vj+1/2 (dots) as functions of tj = jΔt.

The breakup of the midpoint method, as Δt increases, looks different in detail.
Figure 6.3 is the analogue of Figure 6.2, computed with the midpoint method. When
Δt = 0.03, the membrane potential overshoots (that is, shoots above vNa) during
some of the spikes, but close-up views of those spikes (not shown here) do not reveal
any zig-zag behavior near the peak voltage values. Furthermore, there is now what
appears to be a new problem, namely, instances of spikes during which the membrane
potential rises too little, not too much. However, examination of the computed spikes
during which the peak membrane potential remains much smaller than vNa shows
that the cause of the trouble is that the membrane potential vj+1/2, computed in the
preliminary (half) step of the midpoint method, overshoots. The term gKn4(vK − v)
in (2.1) then aborts the rise in v prematurely. This is illustrated by the bottom
panel of Figure 6.3, which shows both vj (solid line) and vj+1/2 (dots) as functions
of tj = jΔt. Thus, even for the midpoint method, the fundamental cause of trouble
is overshoot during the rising phase of the action potential.

Voltage spikes of the WB model are considerably smoother, with a longer rising
phase; see Figure 6.1, panel B. This explains why larger values of Δt can be used to
integrate the WB model equations; compare Figure 4.1.

7. Adaptive time-stepping is of questionable use here. A natural conclu-
sion from section 5 and section 6 would be that time-stepping ought to be adaptive:
Between action potentials, one should use much larger values of Δt than during action
potentials. However, in a network of neurons, standard strategies for adapting time
steps will refine the time step for the entire network each time any of the neurons in
the network spikes, unless one develops a sophisticated strategy using different values
of Δt for different neurons. This point is illustrated by Figure 7.1. In Figure 7.1,
panel A, we show the result of simulating a single RTM neuron (I = 0.7) using ode23

with options=odeset(’Reltol’,0.02). Figure 7.1, panel B, shows the time steps
Δt chosen by the code, as a function of t. Not surprisingly, Δt varies greatly over the
course of a period, from about 0.003 ms during an action potential to about 4.1 ms
just prior to an action potential. This variation, of course, is desirable: It reflects
efficiency of the adaptive time-stepping strategy. In Figure 7.1, panel C, we show re-
sults of a simulation of 500 uncoupled RTM neurons. The drive to the kth neuron is

D
ow

nl
oa

de
d 

10
/1

5/
19

 to
 1

56
.1

11
.1

11
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Fig. 7.1. A: Voltage trace of a spiking RTM neuron. B: Time steps chosen by ode23 of
MATLAB for the simulation in A, plotted on a logarithmic scale. The time step varies by three
orders of magnitude. C: Voltage traces of 500 uncoupled RTM neurons spiking at slightly different
frequencies. D: Time steps chosen by ode23 for the simulation in C, plotted on a logarithmic scale.
The time step variation is reduced from three orders of magnitude to one.

0.6+k/2500, thus the drive varies uniformly from 0.6 to 0.8. The neurons are started
in synchrony, but because of the heterogeneity in drives, they desynchronize. As a
result, the time step variations become much less pronounced. During the final 40ms
of the simulation, the time step varies only from about 0.003ms to about 0.028ms.
Thus much of the advantage offered by adaptive time-stepping is erased.

8. Fully implicit time-stepping is not useful here. A typical approach
to overcoming stability issues constraining Δt is to use fully implicit time-stepping.
However, fully implicit time-stepping, of course, requires the solution of a nonlinear
system of equations in each time step. Simple iterative methods for solving these
systems, such as fixed point iteration or Newton’s method, require sufficiently small
Δt to converge, and the constraint on Δt that appears here as a convergence condition
can be just as severe as the one that we were trying to escape by using fully implicit
time-stepping to begin with. We illustrate this point first with a numerical experiment
for the RTM model, then with analysis for the logistic equation.

8.1. Numerical experiments. As an example, we apply the implicit Euler
method to solve the RTM model equations. To compute vj+1, hj+1, and nj+1 from
vj , hj , and nj , we have to solve a nonlinear system of equations. We do this using
ν > 0 steps of either fixed point iteration or Newton’s method, starting with the
initial guesses vj , hj , and nj . (It is easy to implement Newton’s method using exact,
analytically computed derivatives in this example.) In the limit as ν → ∞, if the
iteration converges, the implicit Euler method is obtained. In practice, one might fix
a fairly small value of ν, obtaining, in effect, an explicit method that approximates the
implicit Euler method if the iteration converges rapidly enough. All of these methods
require time step constraints, which are summarized in Table 3. These constraints
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Table 3

Largest value of Δt, rounded to one significant digit, for which the approximate implicit Euler
method, using ν steps of fixed point iteration or Newton’s method per time step, produces voltages
bounded by vK and vNa for the RTM model with I = 0.7. In each case, the initial guess for the
iteration at a given time step is the approximation at the previous time step.

ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

Fixed point iteration 0.01 0.02 0.01 0.01 0.01
Newton’s method 0.004 0.005 0.004 0.004 0.004

are more severe for implicit Euler with fixed point iteration than for explicit Euler,
and even more severe for implicit Euler with Newton’s method.

8.2. Analysis for the logistic equation. Following Oh and French [22], we
consider, as a model problem, the initial-value problem

(8.1)
dx

dt
= rx(1 − x), x(0) = x0,

with r > 0, 0 < x0 < 1. The equation drives x toward 1 monotonically. If r is
large, the ascent towards 1 is rapid, and for explicit schemes, Δt must be small to
prevent overshoot. Implicit methods can overcome this constraint, but as soon as one
introduces an iterative method for solving the nonlinear algebraic equations arising
in each time step, the same time step constraint typically returns. (Of course, in this
simple example, the nonlinear algebraic equations are quadratic and can therefore be
solved explicitly, but the same is not the case for most nonlinear equations, and we
therefore disregard this point here.)

Proposition 8.1. (a) The equation

(8.2) xj+1 = xj + rΔt xj(1 − xj) (j = 0, 1, 2, . . .),

defining the explicit Euler method for (8.1), assures xj+1 ∈ [0, 1] for all xj ∈ [0, 1] if
and only if

(8.3) Δt ≤ 1

r
.

(b) The equation

(8.4) xj+1 = xj + rΔt xj+1(1 − xj+1) (j = 0, 1, 2, . . .),

defining the implicit Euler method for equation (8.1), has for any r > 0, xj ∈ (0, 1),
and Δt > 0, two solutions x−

j+1 and x+
j+1 with x−

j+1 < 0 and x+
j+1 ∈ (xj , 1). Thus, if

we define xj+1 = x+
j+1, over- and undershoot are prevented without any constraint on

Δt.
(c) Fixed point iteration for (8.4) is locally convergent to x+

j+1 if and only if (8.3)
holds.

(d) Newton’s method for (8.4), starting with the initial guess xj, converges to x+
j+1

for any xj ∈ (0, 1) if and only if (8.3) holds.
Proof. (a) We write g(x) = x+ rΔtx(1−x), so (8.2) becomes xj+1 = g(xj). Note

that g(0) = 0, g(1) = 1, and the maximum of g is attained at x∗ = (1+rΔt)/(2rΔt) >
0. Therefore xj ∈ [0, 1] guarantees xj+1 ∈ [0, 1] if and only if x∗ ≥ 1, which is
equivalent to (8.3).
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(b) For any xj ∈ (0, 1), there are two real solutions xj+1 of (8.4):

x±
j+1 = −1− rΔt

2rΔt
±
√(

1− rΔt

2rΔt

)2

+
xj

rΔt
.

It is straightforward to verify that x−
j+1 < 0 and 0 < x+

j+1 < 1, and therefore, because

x+
j+1 is a solution of (8.4), x+

j+1 > xj .
(c) The derivative of xj + rΔtx(1−x) with respect to x is rΔt (1− 2x). Thus for

x+
j+1 to be a stable fixed point, we need |rΔt(1 − 2x+

j+1)| ≤ 1. This condition holds
for all xj ∈ (0, 1) if and only if (8.3) holds.

(d) We write (8.4) in the form

(8.5) rΔt x2
j+1 + (1 − rΔt)xj+1 − xj = 0

and consider Newton’s method to solve it for xj+1, starting with the initial guess
xj . The left-hand side of (8.5) is a quadratic function in xj+1. Its local minimum
occurs at x† = −(1 − rΔt)/(2rΔt). Note that x+

j+1 > x† and x−
j+1 < x†. This im-

plies that Newton’s method, starting with the initial guess xj , converges to x+
j+1

if and only if xj > x†. For this to hold for any xj ∈ (0, 1), we need 0 ≥ x†,
or 0 ≥ −(1 − rΔt)/(2rΔt), i.e., Δt ≤ 1/r, so again the constraint (8.3) has re-
turned.

9. Stability and accuracy of ETD schemes.

9.1. Numerical results for a single neuron. Figure 9.1, panels A–C, show
voltage traces of the RTM neuron computed using the exponential Euler method.
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Fig. 9.1. Voltage traces of the RTM neuron (I = 0.7), computed using ETD schemes. Note that
the values of Δt used here are very much larger than those in Figure 6.2. Panels A–C: Exponential
Euler. Panels D–F: Exponential midpoint method. Panels G–I: Close-ups of panel F, showing three
different computed voltage spikes, demonstrating that even for Δt = 1, the computed voltage spikes
have a stereotypical shape.
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Fig. 9.2. Log-log plot of relative error in computed frequency for RTM neuron (I = 0.7), as a
function of Δt, for exponential Euler (stars), midpoint method (dots), and SI Euler (circle). The
solid lines are of slopes 1 and 2. (Since the scaling is not the same on both axes, actual slopes seen
in the figures differ from 1 and 2.) Dashed horizontal line: relative error = 0.05 (i.e., five percent
error).

These plots should be compared with Figure 6.2, which shows similar results obtained
with the explicit Euler method. With the exponential Euler method, spike trains that
look qualitatively correct (though with too low a frequency) are obtained even when
Δt = 1ms. Figure 9.1, panels D–F, show similar results for the exponential midpoint
method. Figure 9.2 shows the percentage error in the computed frequency of an RTM
neuron (I = 0.7) as a function of Δt, in a log-log plot, for the exponential Euler
and midpoint methods, as well as for the SI Euler method (see section 10). This
should be compared with Figure 4.2, panel A, where similar results are shown for the
explicit Euler and midpoint methods, and for RK4. In Figure 9.2, no instability is
visible even for Δt as large as 100.5 ≈ 3.2. Five percent accuracy is obtained with
Δt ≈ 10−0.75 ≈ 0.18 when the exponential Euler method is used, and with Δt ≈ 1
when the exponential midpoint method is used.

It is interesting to look at the shapes of the spikes computed with Δt = 1 more
closely. Figure 9.1, panels G–I, show close-ups of Figure 9.1, panel F. Note that
the computed voltage spikes, while much broader than real voltage spikes (compare
Figure 6.1, panel A), look alike, and the voltage rises to nearly vNa, and then drops
to nearly vK , just as in the real spikes.

9.2. Bounding box for the ETD schemes. The following discrete analogue
of Proposition 3.1 shows that the ETD schemes are stable.

Proposition 9.1. For both exponential Euler and the exponential midpoint
method, if inequalities (3.1) hold and (v0, h0, n0) ∈ (vK , vNa) × (0, 1) × (0, 1), then
(vj , hj, nj) ∈ (vK , vNa)× (0, 1)× (0, 1) for all j ≥ 0.

Proof. We assume

(9.1) (vj , hj , nj) ∈ (vK , vNa)× (0, 1)× (0, 1)

and will show

(9.2) (vj+1, hj+1, nj+1) ∈ (vK , vNa)× (0, 1)× (0, 1).

This will then imply our assertion by induction.
We first prove (9.2) for the exponential Euler method. Equations (2.5) and (2.6),

together with (3.1) and (9.1), imply dṽ/dt > 0 for ṽ = vK , dṽ/dt < 0 for ṽ = vNa,
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Fig. 9.3. Results of simulating an E-I network using the midpoint method (A–C), the expo-
nential Euler method (D–F), and the exponential midpoint method (G–H) with various values of
Δt. The horizontal axis denotes time in milliseconds, and the vertical axis denotes neuronal index.
Cells 1–40 (below the dashed line) are I-cells, and cells 41–200 (above the dashed line) are E-cells.

dh̃/dt > 0 for h̃ = 0, dh̃/dt < 0 for h̃ = 1, dñ/dt > 0 for ñ = 0, and dñ/dt < 0 for
ñ = 1. Therefore (ṽ, h̃, ñ) ∈ (vK , vNa) × (0, 1) × (0, 1) for all t ≥ tj , and therefore
(9.2) holds.

Now we prove (9.2) for the exponential midpoint method. Since the preliminary
half step is carried out with the exponential Euler method, what we have already
shown implies that (vj+1/2, hj+1/2, nj+1/2) ∈ (vK , vNa) × (0, 1) × (0, 1). But then
(2.7) and (2.8) imply again that dṽ/dt > 0 for ṽ = vK , dṽ/dt < 0 for ṽ = vNa,
dh̃/dt > 0 for h̃ = 0, dh̃/dt < 0 for h̃ = 1, dñ/dt > 0 for ñ = 0, and dñ/dt < 0 for
ñ = 1, and therefore (ṽ, h̃, ñ) ∈ (vK , vNa)× (0, 1)× (0, 1) for all t ≥ tj , and therefore
(9.2).

9.3. Numerical results for networks. We now consider a network of E- and
I-cells as described in section 2.2. Panels A–C of Figure 9.3 show results of simulating
the network using the (standard) midpoint method with Δt = 0.01, 0.1, and 1.0. For
Δt = 0.1 and 1.0, there is a catastrophic instability, resulting in an overflow error.
Panels D–F and G–I of the figure show similar simulations using the exponential Euler
and exponential midpoint methods, respectively. In both cases, even the results with
Δt = 1ms are qualitatively reasonable, although the oscillation frequency is too low,
especially for the exponential Euler method (panel F of Figure 9.3).

The exponential methods do require somewhat more work per time step than the
standard methods. However, this extra cost is more than compensated for by the
ability to use larger values of Δt with the exponential methods. Table 4 shows some
timing results, obtained using a MacBook Pro (3.06 GHz Intel Core 2 Duo). We also
indicate in the table the frequency, in Hz, of the first I-cell, estimated as 1000/T , where
T denotes the mean interspike interval of the first I-cell. (Since each cell fires once
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Table 4

Simulation times in seconds on a MacBook Pro (3.06 GHz Intel Core 2 Duo) for the network of
Figure 9.3. Asterisks indicate overflow errors. Estimated network oscillation frequencies, rounded
to the nearest Hz, are given to indicate, approximately, the accuracy of the simulations.

0.005 0.01 0.02 0.05 0.1 0.5 1.0

Euler 13.0 s 6.45 s 3.24 s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
42Hz 42Hz 42Hz

Exp. Euler 20.0 s 9.01 s 4.44 s 1.96 s 0.920 s 0.203 s 0.119 s
43Hz 42Hz 42Hz 42Hz 41Hz 35Hz 31Hz

Midpoint 25.3 s 13.1 s 6.56 s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
43Hz 43Hz 43Hz

Exp. midpoint 35.8 s 17.6 s 8.76 s 3.40 s 1.74 s 0.545 s 0.198 s
43Hz 43Hz 43Hz 43Hz 43Hz 39Hz 38Hz

RK4 52.7 s 28.8 s 12.9 s ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
43Hz 43Hz 43Hz

per oscillation period, this is also an estimate of the population oscillation frequency.)
The results indicate that exponential methods can easily yield speed-ups by an order
of magnitude, albeit at the expense of some loss in accuracy.

It may seem pointless to accelerate a calculation that takes only a few seconds
on a laptop to begin with. However, if one wants to simulate much larger networks
for much longer times, or explore high-dimensional parameter spaces—typical situa-
tions in computational neuroscience—acceleration by an order of magnitude becomes
significant.

10. Stability and accuracy of the SI Euler method. The performance of
the SI Euler method is very similar to that of the exponential Euler method: The
computed voltage traces (not shown here) are qualitatively correct, albeit with too
low a firing frequency, even when Δt = 1 ms. The circles in Figure 9.2 show the
percentage error in the frequency of an RTM neuron (I = 0.7) computed using the SI
Euler method as a function of Δt, demonstrating that the SI Euler method is just as
stable as the exponential Euler method, and of very similar accuracy. Results for E/I
networks are very similar to those in Figure 9.3, panels D–F, and are therefore not
shown here. For SI Euler, the analogue of Proposition 9.1 is true and can be derived
analogously.

11. Further analysis for a model equation. During the ascending phase
of the voltage spike, a rise in v causes the opening of sodium channels in the cell
membrane (that is, a rise in the gating variable m), which in turn accelerates the
rise in v. We consider here a model equation that is a simple caricature of this
mechanism and discuss its numerical solution. This will help explain our findings in
earlier sections. Our model equation is

(11.1)
dv

dt
= g(v)(1 − v), v(0) = 0,

where g = g(v) > 0 is a differentiable, increasing function of v ≥ 0. With g(v) = rv
(disregarding the fact that, strictly speaking, this does not satisfy our assumptions
because g(0) = 0), we get the logistic equation, which was considered as a model
equation in section 8.2. We assume that limv→1 g(v) is finite and denote it by 1/τ ,
where τ > 0. Here τ is the time constant characterizing the convergence of v to 1. We
think of τ as the analogue of the duration of the rising phase of the action potential.
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For (11.1), we define the exponential Euler method by

dṽ

dt
= g(vj)(1 − ṽ), ṽ(tj) = vj , vj+1 = ṽ(tj+1).

The exponential midpoint method is defined by

dṽ

dt
= g(vj+1/2)(1− ṽ), ṽ(tj) = vj , vj+1 = ṽ(tj+1),

where vj+1/2 is computed using a step of the exponential Euler method with step size
Δt/2. The SI Euler method is defined by

vj+1 − vj
Δt

= g(vj)(1− vj+1).

Proposition 11.1. (a) The solution of (11.1) is strictly increasing and converges
to 1 as t → ∞.

(b) For stability, the explicit Euler and midpoint methods for (11.1) require Δt ≤
2τ , and RK4 requires Δt ≤ ατ , α ≈ 2.785.

(c) The exponential Euler, exponential midpoint, and SI Euler methods generate
strictly increasing sequences v0, v1, v2, . . . with limj→∞ vj = 1 for all Δt > 0.

Proof. (a) This follows from g(v)(1 − v) > 0 for v < 1. (b) These are standard
stability conditions for these three methods. (c) It is easy to verify that

(11.2) vj+1 = γjvj + 1− γj

with γj = e−g(vj)Δt for the exponential Euler method, γj = e−g(vj+1/2)Δt for the
exponential midpoint method, and γj = (1 + g(vj)Δt)−1 for the SI Euler method. In
each case, 0 < γj < 1, and therefore {vj} is a strictly increasing sequence bounded
from above by 1. Also, in each case there is an upper bound on γj that is independent
of j and less than 1, obtained by replacing g(vj) or g(vj+1/2) by g(0) > 0 in the
definition of γj . This implies limj→∞ vj = 1.

The most straightforward second-order SI midpoint method would be

vj+1/2 = vj +
Δt

2
g(vj)(1 − vj+1/2),(11.3)

vj+1 = vj +Δt g(vj+1/2)

(
1− vj + vj+1

2

)
.(11.4)

Equation (11.4) can be written in the form (11.2) with

γj =
1− g(vj+1/2)Δt/2

1 + g(vj+1/2)Δt/2
.

To ensure that this number does not become negative, we need Δt ≤ 2τ . Thus a time
step constraint similar to those for the fully explicit methods has returned here.

12. Summary and discussion. The work presented here provides an under-
standing of why exponential time differencing is a good idea not only for Hodgkin–
Huxley-like PDEs, but even for the model equations for “space-clamped” neurons,
the Hodgkin–Huxley-like ODEs. We have demonstrated that for Hodgkin–Huxley-
like ODEs, standard explicit time-stepping methods, such as Euler’s method, the
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midpoint method, or RK4, require very small time steps, often on the order of a hun-
dredth of a millisecond, because of the rising phase of the action potential, which often
lasts only a few hundredths of a millisecond. When one uses larger time steps in these
methods, there is overshoot during the rising phase of the action potential, trigger-
ing instability. By contrast, the exponential Euler method, the exponential midpoint
method in the form proposed here, and the SI Euler method allow arbitrarily large
time steps. With Δt ≈ 1ms, computed voltage spikes are, of course, broader than the
real ones, but the solutions are otherwise qualitatively similar to the correct solutions.
Thus the exponential methods, in particular the exponential midpoint method, seem
useful for the preliminary exploration of large parameter spaces or large networks.

Exponential time differencing is a large field of current research [5, 6, 10, 11, 12,
15, 18, 20, 21, 32]. Most of the work on ETD has focused on PDEs of the form

(12.1)
du

dt
= Lu+N(u, t)

with L linear (often a second-order elliptic partial differential operator) and N nonlin-
ear. This is a natural decomposition of the right-hand side reaction-diffusion problems,
such as Hodgkin–Huxley-like PDEs. However, here we consider Hodgkin–Huxley-like
ODEs, which cannot naturally be written in the form (12.1). We demonstrate that,
and explain why, it is a good idea to use ETD even for the Hodgkin–Huxley ODEs,
exploiting the fact that in Hodgkin–Huxley-like systems, each dependent variable ap-
pears linearly in the equation governing its time evolution. For the Hodgkin–Huxley
equations with space dependence, we believe that one would want to combine an ETD
method designed for reaction-diffusion problems with ideas of the sort discussed here
in order to overcome both the diffusive and the reactive time step constraints, and we
plan to make this the subject of future work.

The idea of using this kind of exponential method for neuronal simulations is
not ours. In fact, the exponential Euler method is the default time-stepping method
in the software packages CSIM [19] and GENESIS [2]. Its accuracy in the limit as
Δt → 0 was analyzed by Oh and French [22]. We have made a small modification to
the second-order method of Oh and French [22]: We use the exponential Euler method
for the preliminary half step, whereas Oh and French used the explicit Euler method
[22, equation (4)], which reintroduces stability issues during the ascending phase of
the action potential. For instance, for the RTM neuron, the second-order method of
Oh and French allows Δt = 0.5ms but becomes unstable for Δt = 0.8ms. Although
the method of Oh and French is not unconditionally stable for Hodgkin–Huxley-like
systems, it can easily be seen to be unconditionally stable for the model problem
of section 11. In fact, Oh and French presented numerical results for their method
applied to the logistic equation [22, Figure 1], a special case of the model equation in
section 11.

An alternative approach to performing neuronal network simulations without a
need for extremely small time steps, likely more accurate but also very much more
complicated than ETD with large Δt, has been proposed by Sun, Zhou, and Cai [26].
In their method, voltage spike shapes are precomputed and then inserted when needed
during the simulation. Stewart and Bair [25] applied a Picard-iteration algorithm
to the RTM neuron. (Their model equations, taken from [3], differ slightly from
ours.) They found that the scheme still has a stability threshold, although one that
is significantly less stringent than that of RK4 [25, p. 128].

It is often acceptable not to resolve the spike shape in detail. The widely used
integrate-and-fire model does not even model spike shapes at all. There are, how-
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ever, situations in which detailed spike shapes do matter. One example that we are
aware of is that of gap-junctionally (electrically) coupled neurons. Spike shapes, and
in particular spike widths, contribute to determining whether gap junctions are syn-
chronizing, which is the usual situation [17, 29], or antisynchronizing, which is at least
a mathematical possibility [4].

Each figure in this paper was generated by a stand-alone MATLAB code, all of
which is available from the first author upon request.

Acknowledgments. We thank Shane Lee for pointing out that in the network
simulations of [16] (midpoint method, Δt = 0.02ms), there are subtle indications of
near-instability. This observation motivated the work described here.
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